万用表/多用表电流表/钳形电流表电压表电源电能表校验装置无功功率表功率表电桥电能质量分析仪功率因数表电能(度)表介质损耗测试仪试验变压器频率表相位表同步指示器电阻表(阻抗表)电导表磁通表外附分流器 更多>>
流量检测仪表物位检测仪表记录/显示仪表机械量检测仪表温度检测仪表执行器显示控制仪表压力检测仪表过(流)程分析/控制仪表过程仪表阀门透视仪工业酸度计溶氧仪超声界面计校验仪仿真器其他工业自动化仪表 更多>>
检漏仪电火花检测(漏)仪超声检测仪其它探伤仪金属探测仪涂层检测仪其它硬度计测振仪频闪仪动平衡仪涂层测厚仪超声波测厚仪橡胶塑料测厚仪壁厚测厚仪塑料薄膜片测厚仪镀层测厚仪其它测厚仪维氏硬度计洛氏硬度计布氏硬度计 更多>>
光存储器简称光盘,广义的来说是是由光盘驱动器和光盘片组成的光盘驱动系统,是近年来颇受重视的一种外存设备,更是多媒体计算机不可缺少的设备。在光存储技术中,利用光盘上的凹坑或变性来保存数据,用带激光头的光驱来读写数据。光盘用带金属反射层的塑料聚合物制成,轻便又结实,而且防磁、防水和防摔。
1 存储密度高
一张130mm直径的光盘可存储1000Mb,为硬磁盘的几十倍,软盘的几百倍。
2 非接触式读写信息
光学读写头与光盘相距1~2 mm,不会磨损盘片。
3 存储寿命长
10年以上
4 信息的信噪比高
光盘CNR在50 dB以上,多次读出也不降低。
5 信息位价格低
光盘可容易大量复制。其信息位价格比磁记录价格低几十倍。
光驱虽然在1991年的时候就已经问世,但是发展显得非常缓慢。1993年,第二代MPC规格问世,光驱的速度已变成了双倍速,传输率达到了300KB/S,平均搜寻时间为400ms。1995年夏,Multimdeia PC Working Group公布第三代规格标准,光驱速度提高到四倍速,数据传输率为600KB/S,数据的平均时间不大于250ms。兼容光盘格式:CD-Audio、CD-Mode1/2、CD-ROM/XA、photo-CD、CD-R、Video-CD、CD-I等。 再以后,光驱提速也成为各家厂商技术发展的主要目标,速度从4倍速、8倍速,一直提高到48倍速、52倍速不等。随着技术的发展和成熟,光驱的价格已经下降了一个可以接受的水平,当时间进化到97年左右的时候,光驱已经开始普及开来了。
DVD的原理与光驱大同小异,在可以读取DVD光盘的时候也能读取DVD光盘。一张DVD光盘的最小储存能力达到了4.7GB。而随着DVD技术的发展,单面双层、双目双层技术等不断开发出来,DVD可以存储的数据容量也急速的增大。而DVD的格式初期有:DVD-ROM(用于数据记录,包括电脑应用的多媒体数据;)、DVD-Video(用于记录家庭影音设备或者DVD-ROM驱动器的视频信息。这种格式具有版权保护功能)、DVD-Audio(用户记录高品质的多音轨音频)。
随着光驱、DVD、刻录机的出现,使得用户开始面临一种选择,而厂商也在考虑,到底是否可以把这些设备统一到一个设备上面呢?在这样的情况下,Combo横空出世了。Combo可谓是光存储市场上的一匹“黑马”,但是早在1999年,IT巨头三星公司已提出了Combo的概念,并推出了业界的第一款Combo——SM-304,规格为4X CD-R、4X CD-RW、24X CD-ROM以及4X DVD-ROM。但是由于当时制造Combo的技术空前复杂,难度极高,使得有能力生产Combo的厂商寥寥无几。同时,由于技术上的不成熟,使得Combo的性能难以与单个产品媲美。
新一代DVD标准分裂成三种:一种以索尼、松下、日立、先锋、夏普、三星、LG、飞利浦以及法国的ThomsonMM为代表的Blu-ray标准(蓝光DVD);一种以东芝和NEC为代表的DVD AOD(Advanced Optical Disk)标准,简称AOD;最后一种是我国台湾省的工研院光电所提出的HD-DVD标准,其目的在于躲避AOD和Blu-ray的高额专利费。目前HD-DVD的优势并不明显,所以全球整个光存储行业都在盯着Blu-ray与AOD的标准之争,综合种种因素来看,新一代统一标准还是遥遥无期。
蓝光(Blu-ray)或称蓝光盘(Blu-ray Disc,缩写为BD)利用波长较短(405nm)的蓝色激光读取和写入数据,并因此而得名。而传统DVD需要光头发出红色激光(波长为650nm)来读取或写入数据,通常来说波长越短的激光,能够在单位面积上记录或读取更多的信息。因此,蓝光极大地提高了光盘的存储容量,对于光存储产品来说,蓝光提供了一个跳跃式发展的机会。目前为止,蓝光是最先进的大容量光碟格式,BD激光技术的巨大进步,使你能够在一张单碟上存储25GB的文档文件。这是现有(单碟)DVDs的5倍。在速度上,蓝光允许1到2倍或者说每秒4.5至9兆的记录速度。蓝光光碟拥有一个异常坚固的层面,可以保护光碟里面重要的记录层。飞利浦的蓝光光盘采用高级真空连结技术,形成了厚度统一的100µm的安全层。飞利浦蓝光光碟可以经受住频繁的使用、指纹、抓痕和污垢,以此保证蓝光产品的存储质量数据安全 。
1.高密、高效、高速的母盘刻录技术
采用短波激光和大数值孔径的物镜,可使道间距减小,比特长度减小,从而可提高光盘的刻录密度;采用脉宽调制,可显着提高记录效率。
2.DVD单面盘的精密注塑及双盘的封装技术。
将DVD母盘、模板生产线挑选出的合格模板,用精密注塑机注塑成形,制得的DVD半成品经适当冷却,送入溅射室,根据不同要求,分别溅射金或铅,然后进行粘合剂旋涂、封装、紫外光固化、在线检测、商标印刷等,制成DVD只读光盘。
CD、DVD、HD DVD和BD等光盘(Optical disc),都采用了类似的盘片与光道结构,以及数据表示与读写方法。
l 盘片结构与读取
(只读)光盘主要由保护层、反射激光的(铝、银、金等)金属反射层、刻槽层和(聚碳酸脂)塑料基衬垫组成。
光盘的外径一般为120毫米(4.75英寸)(也有80 毫米即3.15英寸外径的小型盘片)、内径15毫米、厚1.2毫米,重量为14克~18克。CD-DA(激光唱盘)分3个区:导入区、导出区和声音数据记录区,如
光盘在驱动马达的带动下高速旋转,光头发射的激光束经透明的塑料基后被金属反射层反射,反射的光经棱镜分光后被光头所接收。存储的数据用光盘刻槽层上的凹坑(pit)和岸台(land)表示,光驱利用坑台交界处反射光强的突变来读取数据。
l 光道结构
光盘光道的结构与磁盘磁道的结构不同:磁盘存放数据的磁道是多个同心环,而光盘的光道则是一条螺旋线(CD盘的光道长度大约为5公里。
磁盘片转动的角速度是恒定的,通常用CAV (Constant Angular Velocity,恒定角速度)表示。但在不同的磁道上,磁头相对于磁道的速度(称为线速度)是不同的。采用同心环磁道的好处之一是控制简单,便于随机存取。但由于内外磁道的记录密度(比特/每英寸)不相同,外磁道的记录密度低,内磁道的记录密度高,外磁道的存储空间就没有得到充分利用,因而存储器没有达到应有的存储容量。
光盘转动的角速度在光盘的内外区是不同的,而它的线速度是恒定的,就是光头相对于盘片运动的线速度是恒定的,通常用CLV(Constant Linear Velocity,恒定线速度)表示。由于采用了恒定线速度,所以内外光道的记录密度(比特数/每英寸)可以做到一样,这样盘片就得到充分利用,可以达到它应有的数据存储容量。但随机存储特性变得较差,控制也比较复杂(从CAV到CLV,业界花了30多年的时间才得以实现)。
l 数据的表示和读写
1.数据表示
磁盘利用磁铁的两个极性(南极和北极)来记录“1”和“0”这种二进制数据,使用磁头来读取数据。光盘则是利用在盘上压制凹坑的机械办法,利用凹坑的边缘来记录“1”、而用凹坑和岸台的平坦部分记录“0”,使用激光来读出。
附注:除了普通的光盘外,还有磁光盘(Magneto Optical Disc,MOD)和相变光盘(Phase Change Disc,PCD),它们记录和读写数据的方式与普通光盘不同。MOD利用磁的记忆特性,借助激光来写入和读出数据;PCD则是利用一些特殊的材料,这些材料在激光加热前后的反射率不同,利用它们的反射率不同来记忆“1”和“0”。
使用磁盘驱动器时,既可以把数据写入到盘上,又可以从盘上读出数据;磁光盘和相变光盘也同样具有写入和读出两个功能,而且可以在同一台驱动器上完成。可是只读光盘,则只能读光盘上的数据,而不能自己把数据写到光盘上。当然,我们也可以利用光盘刻录机和-R/RW型光盘来一次性写入/反复擦写数据。
2.数据写入
只读型光盘(如CD-DA、CD-ROM、DVD-Video、DVD-ROM等)上的数据是用压模(stamper)冲压而成的,而压模是用原版的主盘(master disc)制成的。
在制作原版盘时,是用编码后的二进制数据去调制聚焦激光束,如果写入的数据为“0”,就不让激光束通过,写入“1”时,就让激光束通过,或者相反。在制作原版盘的玻璃盘上涂有感光胶,曝了光的地方经化学处理后就形成凹坑,没有曝光的地方保持原样,二进制信息就以这样的形式刻录在原版盘上。在经过化学处理后的玻璃盘表面上镀一层金属,用这种盘去制作母盘(mother disc),然后用母盘制作压模,再用压模去大批量复制。成千上万的CD盘就是用压模压出来的,所以价格才这样便宜(一般一张盘的生产成本才几角钱,当然版权费除外)。
3.数据读出
光盘上的数据要用光驱来阅读。光驱由光学读出头、光学读出头驱动机构、光盘驱动机构、控制线路以及处理光学读出头读出信号的电子线路等组成。
光学读出头是光盘系统的核心部件之一,它由光电检测器、透镜、激光束分离器、激光器等元件组成,它的结构如图18-15所示。激光器(一般采用激光二极管)发出的激光经过几个透镜聚焦后到达光盘,从光盘上反射回来的激光束沿原来的光路返回,到达激光束分离器后反射到光电二极管检测器,由其把光信号变成电信号,再经过电子线路处理后还原成原来的二进制数据。
光盘上压制了许多凹坑,激光束在跨越凹坑的边缘时,反射的光的强度有突变,光盘就是利用这个极其简单的原理来区分“1”和“0”的。凹坑的边缘代表“1”,凹坑和岸台的平坦部分代表“0”,一定长度的凹坑和岸台都代表着若干个“0”。