万用表/多用表电流表/钳形电流表电压表电源电能表校验装置无功功率表功率表电桥电能质量分析仪功率因数表电能(度)表介质损耗测试仪试验变压器频率表相位表同步指示器电阻表(阻抗表)电导表磁通表外附分流器 更多>>
流量检测仪表物位检测仪表记录/显示仪表机械量检测仪表温度检测仪表执行器显示控制仪表压力检测仪表过(流)程分析/控制仪表过程仪表阀门透视仪工业酸度计溶氧仪超声界面计校验仪仿真器其他工业自动化仪表 更多>>
检漏仪电火花检测(漏)仪超声检测仪其它探伤仪金属探测仪涂层检测仪其它硬度计测振仪频闪仪动平衡仪涂层测厚仪超声波测厚仪橡胶塑料测厚仪壁厚测厚仪塑料薄膜片测厚仪镀层测厚仪其它测厚仪维氏硬度计洛氏硬度计布氏硬度计 更多>>
加速器质谱分析是指加速器与质谱分析相结合的一种核分析技术。将待测样品在加速器的 离子源中电离,随后将离子束引出并加速,再借助电荷态、荷质比、能量 和原子序数的选择,鉴别被加速的离子并加以记录,实现同位素比值的测定。
加速器质谱法应用最多的是测定年代和同位素示踪。实际上,现代科学技术的许多领域(如考古学、生物医学、地学、水文学、宇宙学、原子核物理学等)都十分依赖于加速器质谱法。 例如用于极地冰14C年龄测定,直接测定冰气泡中的14C,可以建立长时期冰的时标。用于植物微化石测年,湖积物中植物微化石是研究更新世古气候的重要途径,但样品极少,传统的放射性衰变计数法无法测定。用于测定海洋底柄有孔虫和浮游有孔虫化石14C的浓度差,可探讨古海洋14C浓度变化及深海水循环速度。
加速器质谱装置通常由离子源、注入系统、串列加速器、高能分析系统、探测器、计算机控制与数据获取系统等部分组成。 加速器质谱法的两个关键问题是:一是如何抑制本底。本底来自于内源的和外源的两种途径。内源本底又称为机器本底。依离子种类的不同,可分为同量异位素干扰、分子干扰和同位素干扰。这类干扰本底的大小反映了加速器质谱计的分析能力。外源本底来自于样品被污染,以及离子源中的交叉污染与记忆效应。另一个关键问题是如何降低分馏效应。分馏效应来自样品制备过程中的化学分馏、离子源中的溅射分馏、串列加速器中的剥离分馏和离子输运过程中的传输分馏等。现已发展了多种方法以克服本底和降低分馏效应,使加速器质谱法可测定的同位素丰度比达到10-12—10-15,取样量可小至1—5毫克碳,在某些情况下甚至可小到10—100微克碳,分析1个样品的时间一般只需十几分钟,从而使以前无法实现的分析任务成为可能。
与传统的放射性衰变计数法不同,加速器质谱法用直接计数法取代衰变计数法。以14C分析为例,传统方法是测定14C衰变时的放射性,而加速器质谱法则是直接计数14C的数目,从而极大地提高了分析灵敏度。因此,加速器质谱法特别适用于长寿命放射性核素的分析,如14C、10Be、26Al、36Cl、41Ca、53Mn、129I等,也可用于稳定核素的测量,如贵金属及半导体材料中痕量杂质元素的分析。加速器质谱法通常给出的是同位素比值,如14C/12C 、10Be/9Be、36Cl/Cl总等。在此基础上,通过换算可给出样品的年龄或样品中某种感兴趣核素的含量。