万用表/多用表电流表/钳形电流表电压表电源电能表校验装置无功功率表功率表电桥电能质量分析仪功率因数表电能(度)表介质损耗测试仪试验变压器频率表相位表同步指示器电阻表(阻抗表)电导表磁通表外附分流器 更多>>
流量检测仪表物位检测仪表记录/显示仪表机械量检测仪表温度检测仪表执行器显示控制仪表压力检测仪表过(流)程分析/控制仪表过程仪表阀门透视仪工业酸度计溶氧仪超声界面计校验仪仿真器其他工业自动化仪表 更多>>
检漏仪电火花检测(漏)仪超声检测仪其它探伤仪金属探测仪涂层检测仪其它硬度计测振仪频闪仪动平衡仪涂层测厚仪超声波测厚仪橡胶塑料测厚仪壁厚测厚仪塑料薄膜片测厚仪镀层测厚仪其它测厚仪维氏硬度计洛氏硬度计布氏硬度计 更多>>
温度测量仪表是测量物体冷热程度的工业自动化仪表。最早的温度测量仪表,是意大利人伽利略于1592年创造的。它是一个带细长颈的大玻璃泡,倒置在一个盛有葡萄酒的容器中,从其中抽出一部分空气,酒面就上升到细颈内。当外界温度改变时,细颈内的酒面因玻璃泡内的空气热胀冷缩而随之升降,因而酒面的高低就可以表示温度的高低,实际上这是一个没有刻度的指示器。
正确选择和使用温度测量仪表是实现对温度参数进行正确、有效测控的首要前提。下面是一些研究人员根据自己以往在计量线的设计、安装、调试经验。
仪表功能的选择
如果我们需要随时了解温度的变化趋势,就应该选择具有记录功能的仪表;如果温度变化对安全生产、产品质量有重大影响的话,我们一定要选择具有报警功能的仪表;对于一般只需要监视温度的情况下,我们用指示类测温仪观察温度值就行了;在需要对温度参数进行随时调节时,设计温度测控系统来对温度进行控制。
仪表精度的选择
精度的选择,一般要考虑生产工艺过程对温度仪表的要求以及温度参数对生产的重要程度;在需要对温度参数进行控制的情况下,我们还要考虑仪表的精度与整个测控系统的匹配问题。
仪表量程的选择
量程选择既要考虑到正常的生产情况,又要考虑在故障情况下温度的变化范围。
其它注意事项
进行现场中低温测量时,宜选择双金属温度计,同时要注意其刻度盘直径和径向;有振动的地方,不宜选用工业玻璃棒式温度计;测温点较高或现场环境不好时,宜选择压力式温度计,但与温包相连的毛细管的长度不能超过20m;热电阻、热电偶的选择要考虑它们的测量范围、响应速度、分度号、使用安全等方面;对于需要对温度参数进行控制时,需要设计一个测控系统,同时要考虑敏感元件、变送器、执行器、显示仪表等之间的匹配、安全等问题。
温度测量仪表的种类繁多,但可按作用原理,测量方法,测量范围作如下分类:
按作用原理分类
温度的测量是借助于物体在温度变化时,它的某些性质随之变化的原理来实现的。但是,并不是任意选择某种物理性质的变化就可做成温度计。用于测温的物体的物理性质要求连续、单值的随温度变化,不与其它因素有关,而且复现性好,便于精确测量。
目前按作用原理制作的温度计主要有膨胀式温度计、压力式温度计、电阻温度计,热电偶高愠计和辐射高温计等几种。它们是分别利用物体的膨胀,压力、电阻、热电势和辐射性质随温度变化的原理制成的。
按测量方法分类
温度测量时按感温元件是否直接接触被测温度场(或介质)而分成接触式温度测量仪表(膨胀式温度计,压力式温度计、电阻温度计和热电偶高温计属此类)和非接触式温度测量仪表(如辐射式高温计)两类。
接触式测温法的特点是测温元件直接与被测对象相接触,两者之间进行充分的热交换,达到热平衡,这时感温元件的某一物理参数的量值就代表了被测对象的温度值。这种测温方法优点是直观可靠,缺点是感温元件影响被测温度场的分布,接触不良等都会带来测量误差,另外温度太高和腐蚀性介质对感温元件的性能和寿命会产生不利影响。
非接触测温法的特点是感温元件不与被测对象相接触,而是通过辐射进行热交换,故可避免接触测温法的缺点,具有较高的测温上限。此外,非接触测温法热惯性小,可达千分之一秒,便于测量运动物体的温度和快速变化的温度。由于受物体的发射率、被测对象到仪表之间的距离以及烟尘、水汽等其他介质的影响,这种测温方法一般测温误差较大。
按测量温度范围分类
通常将测量温度在600℃以下的温度测量仪表叫温度计,如膨胀式温度计,压力式温度计和电阻温度计等。测量温度在600℃以上的温度测量仪表通常叫高温计,如热电高温计和辐射高温计。
各种温度计产生的同时就规定了各自的分度方法,也就出现了各种温标,如原始的摄氏温标、华氏温标、气体温度计温标和铂电阻温标等 。为了统一温度的量值,以达到国际通用的目的,国际权度局最早规定以玻璃水银温度计为基准仪表,统一用摄氏温标。后经数次改革,到1927年改用以热力学温度为基础、以纯物质的相变点为定义固定点的国际温标,以后又经多次修改完善。
国际现代通用的温标是1967年第13次国际权度大会通过的,1968年国际实用温标。它以13个纯物质的相变点,如氢三相点,即氢的固、液、气三态共存点(-259.34℃);水三相点(0.01℃)和金凝固点(1064.43℃)等,作为定义固定点来复现热力学温度的。
中间插值在-259.34~630.74℃之间,用基准铂电阻;在630.74~1064.43℃之间,用基准铂铑-铂热电偶;在1064.43℃以上用普朗克公式复现。
很早以前,人们在烧窑和冶锻时,通常是凭借火焰和被加热物体的颜色来判断温度的高低。据记载,1780年韦奇伍德根据瓷珠在高温下颜色的变化,来识别烧制陶瓷的温度,后来又有人根据陶土制的熔锥在高温下弯曲变形的程度,来识别温度。
1709年,德国的华伦海特于荷兰首次创立温标,随后他又经过多年的分度研究,到1714年制成了以水的冰点为32度、沸点为212度、中间分为180度的水银温度计,即至今仍沿用的华氏温度计。
1742年,瑞典的摄尔西乌斯制成另一种水银温度计,它以水的沸点为100度、冰点作为0度。到1745年,瑞典的林奈将这两个固定点颠倒过来,这种温度计就是至今仍沿用的摄氏温度计。
早在1735年,就有人尝试利用金属棒受热膨胀的原理,制造温度计,到18世纪末,出现了双金属温度计;1802年,查理斯定律确立之后,气体温度计也随之得到改进和发展,其精确度和测温范围都超过了水银温度计。
1821年,德国的塞贝克发现热电效应;同年,英国的戴维发现金属电阻随温度变化的规律,这以后就出现了热电偶温度计和热电阻温度计。1876年,德国的西门子制造出支铂电阻温度计。
辐射温度计和光学高温计是20世纪初,维思定律和普朗克定律出现以后,才真正得到实用。从60年代开始,由于红外技术和电子技术的发展,出现了利用各种新型光敏或热敏检测元件的辐射温度计(包括红外辐射温度计),从而扩大了它的应用领域。
很早以前,人们在烧窑和冶锻时,通常是凭借火焰和被加热物体的颜色来判断温度的高低。据记载,1780年韦奇伍德根据瓷珠在高温下颜色的变化,来识别烧制陶瓷的温度,后来又有人根据陶土制的熔锥在高温下弯曲变形的程度,来识别温度。
1709年,德国的华伦海特于荷兰首次创立温标,随后他又经过多年的分度研究,到1714年制成了以水的冰点为32度、沸点为212度、中间分为180度的水银温度计,即至今仍沿用的华氏温度计。
1742年,瑞典的摄尔西乌斯制成另一种水银温度计,它以水的沸点为100度、冰点作为0度。到1745年,瑞典的林奈将这两个固定点颠倒过来,这种温度计就是至今仍沿用的摄氏温度计。
早在1735年,就有人尝试利用金属棒受热膨胀的原理,制造温度计,到18世纪末,出现了双金属温度计;1802年,查理斯定律确立之后,气体温度计也随之得到改进和发展,其精确度和测温范围都超过了水银温度计。
1821年,德国的塞贝克发现热电效应;同年,英国的戴维发现金属电阻随温度变化的规律,这以后就出现了热电偶温度计和热电阻温度计。1876年,德国的西门子制造出支铂电阻温度计。
辐射温度计和光学高温计是20世纪初,维思定律和普朗克定律出现以后,才真正得到实用。从60年代开始,由于红外技术和电子技术的发展,出现了利用各种新型光敏或热敏检测元件的辐射温度计(包括红外辐射温度计),从而扩大了它的应用领域。
仪器百科,仪器仪表知识,一查百通!
已收录词条13069个