您好,欢迎来到维库仪器仪表网 网站登录 | 免费注册 | 忘记密码

手机访问

半导体雪崩光电二极管阅读:1166

    半导体雪崩光电二极管 (semiconductor avalanche photodiode )是具有内部光电流增益的半导体光电子器件,又称固态光电倍增管。它应用光生载流子在二极管耗尽层内的碰撞电离效应而获得光电流的雪崩倍增。这种器件具有小型、灵敏、快速等优点,适用于以微弱光信号的探测和接收,在光纤通信、激光测距和其他光电转换数据处理等系统中应用较广。

影响响应速度的因素

    载流子在耗尽层中获得的雪崩增益越大,雪崩倍增过程所需的时间越长。因而,雪崩倍增过程要受到“增益-带宽积”的限制。在高雪崩增益情况下,这种限制可能成为影响雪崩光电二极管响应速度的主要因素之一。但在适中的增益下,与其他影响光电二极管响应速度的因素相比,这种限制往往不起主要作用,因而雪崩光电二极管仍然能获得很高的响应速度。现代雪崩光电二极管增益-带宽积已达几百吉赫。
    与一般的半导体光电二极管一样,雪崩光电二极管的光谱灵敏范围主要取决于半导体材料的禁带宽度。制备雪崩光电二极管的材料有硅、锗、砷化镓和磷化铟等Ⅲ-Ⅴ族化合物及其三元、四元固熔体。根据形成耗尽层方法的不同,雪崩光电二极管有PN结型(同质的或异质结构的PN结。其中又有一般的PN结、PIN结及诸如 N+PπP+结等特殊的结构)、金属半导体肖特基势垒型和金属-氧化物-半导体结构等。

优点

    与真空光电倍增管相比,雪崩光电二极管具有小型、不需要高压电源等优点,因而更适于实际应用;与一般的半导体光电二极管相比,雪崩光电二极管具有灵敏度高、速度快等优点,特别当系统带宽比较大时,能使系统的探测性能获得大的改善。

工作原理

    当一个半导体二极管加上足够高的反向偏压时,在耗尽层内运动的载流子就可能因碰撞电离效应而获得雪崩倍增。人们最初在研究半导体二极管的反向击穿机构时发现了这种现象。当载流子的雪崩增益非常高时,二极管进入雪崩击穿状态;在此以前,只要耗尽层中的电场足以引起碰撞电离,则通过耗尽层的载流子就会具有某个平均的雪崩倍增值。
    碰撞电离效应也可以引起光生载流子的雪崩倍增,从而使半导体光电二极管具有内部的光电流增益。1953年,K.G.麦克凯和K.B.麦卡菲报道锗和硅的PN结在接近击穿时的光电流倍增现象。1955年,S.L.密勒指出在突变PN结中,载流子的倍增因子M随反向偏压V的变化可以近似用下列经验公式表示
    M=1/[1-(V/VB)n]
    式中VB是体击穿电压,n是一个与材料性质及注入载流子的类型有关的指数。当外加偏压非常接近于体击穿电压时,二极管获得很高的光电流增益。PN结在任何小的局部区域的提前击穿都会使二极管的使用受到限制,因而只有当一个实际的器件在整个PN结面上是高度均匀时,才能获得高的有用的平均光电流增益。因此,从工作状态来说,雪崩光电二极管实际上是工作于接近(但没有达到)雪崩击穿状态的、高度均匀的半导体光电二极管。

仪器百科,仪器仪表知识,一查百通!

已收录词条13069