万用表/多用表电流表/钳形电流表电压表电源电能表校验装置无功功率表功率表电桥电能质量分析仪功率因数表电能(度)表介质损耗测试仪试验变压器频率表相位表同步指示器电阻表(阻抗表)电导表磁通表外附分流器 更多>>
流量检测仪表物位检测仪表记录/显示仪表机械量检测仪表温度检测仪表执行器显示控制仪表压力检测仪表过(流)程分析/控制仪表过程仪表阀门透视仪工业酸度计溶氧仪超声界面计校验仪仿真器其他工业自动化仪表 更多>>
检漏仪电火花检测(漏)仪超声检测仪其它探伤仪金属探测仪涂层检测仪其它硬度计测振仪频闪仪动平衡仪涂层测厚仪超声波测厚仪橡胶塑料测厚仪壁厚测厚仪塑料薄膜片测厚仪镀层测厚仪其它测厚仪维氏硬度计洛氏硬度计布氏硬度计 更多>>
声光Q开关是在激光腔内起调Q作用的功能元件,是作为一种受控的可变损耗而插入的。通过激光调Q能使连续激光功率输出转化为具有高峰值功率的激光脉冲输出,从而在激光测距、通讯、机件精细加工及医疗设备等领域获得广泛应用。
在常用的激光打标中,声光Q开关利用了超声波和 光柱在介质中散射的相互作用的关系. 光束以与在散射介质中的声波表面成布拉格角的方向进入, 按照周期性变化的以声波产生的衍射率进行衍射。
首先, 射频信号被附着在熔融石英上的传感器所感应到,厚度伸展振动产生. 超声波横波由于震动在熔融石英中传播, 而声波产生的相光栅也形成了. 激光束当满足相对于这个相位光栅成布拉格角时发生衍射, 与入射光在太空中分散开。
如果激光光学谐振腔的建成是相对于0维衍射光(非衍射光), 当射频信号被感知,衍射光便从激光光学谐振腔轴线产生. 结果,激光光学谐振腔内发生损失,及激光振荡受到打压. 利用这一现象, 射频信号只在特定某个时间长度内被感知,(地位低Q值)来暂停激光振荡. 在此期间,反转的Nd:YAG激光棒通过连续泵浦积累了很多. 当射频信号减至零(地位高Q值)和激光光学谐振腔内的损失消除了, 累积的能量以在极短的时间长度内脉冲形式的激光振荡被激活,. 他们是Q开关脉冲.
这种情况在图2被简要解释. 当一个射频信号,受到脉冲调制,可以定期发生Q开关脉冲. 当期Q开关脉冲愈来愈短,比高阶的Nd:YAG激光棒生命周期(约200微秒)还要短的时候 ,反转的数量下跌并且Q开关脉冲的峰值也下跌.
1、适用于多模非偏振固体激光器,小型偏振/非偏振固体二极管泵浦激光器;
2、 水冷型或冷传导型;
3、 高重复频率;
4 、插损小,抗损伤阈值高;
5 、可光纤耦合:Q开关和单模光纤的耦合;
1 、 QS24-5S-S 声光 Q 开关; 24MHz 射频频率;通光直径 5mm ,用于激光束直径 3-5mm 左右;超声模式是压缩式( C 模式),主要用于非偏振光激光器中;水嘴是 S 型接头;底面安装孔是英制螺钉孔。
2 、 QS27-4S-B-AT1 声光 Q 开关; 27MHz 射频频率;通光直径 4mm ,用于激光束直径 3-4mm 左右;超声模式是剪应式( S 模式),主要用于非偏振光激光器中;水嘴是 B 型接头;底面安装孔是公制螺钉孔。
3 、 QS68-2.5C-B-GH9 声光 Q 开关; 68MHz 射频频率;通光直径 2.5mm ,用于激光束直径 2mm 左右;超声模式是压缩式( C模式),主要用于线偏振光激光器中;水嘴是 B 型接头; GH9 是二极管泵浦固体激光器用的小型 Q 开关 。
调Q技术就是通过某种方法使腔的Q值随时间按一定程序变化的技术。在泵浦开始时使腔处在低Q值状态,即提高振荡阈值,使振荡不能生成,上能级的反转粒子数就可以大量积累,当积累到值(饱和值)时,突然使腔的损耗减小,Q值突增,激光振荡迅速建立起来,在极短的时间内上能级的反转粒子数被消耗,转变为腔内的光能量,在腔的输出端以单一脉冲形式将能量释放出来,于是就获得峰值功率很高的巨脉冲激光输出。声光调Q技术是指在谐振腔中放入声光介质,当没有超声波存在时,光束可自由通过声光介质,腔的Q值很高,容易产生激光振荡。当有超声波时,声光介质密度发生周期变化,导致折射率周期变化,使光束发生偏转,这时谐振腔的Q值很低,使上能级粒子数迅速积累。 QS24-xx-x和QS27-xx-x是工业标准的24MHz和27MHz声光Q开关,可广泛应用于灯泵浦和二极管泵浦的1064nm的Nd:YAG激光器中。